

Examination May-2014

Total no of page-1

B. Tech.

Paper: AE 205 Applied Thermodynamics

Paper ID-A0704

Time allowed: 3 Hrs. Max. Marks: 60

Note: Section A is compulsory, attempt any 4 questions from section B & Attempt any 2 questions from section C.

Section A

- 1. I. What is meant by term fuel? What are its constituents?
 - II. Define compound.
 - III. Define degree of reaction.
 - IV. What do you understand by term 'siip factor'.
 - V. Write the difference between heat transfer and thermodynamics.
 - VI. Define the overall heat transfer co-efficient.
 - VII. Discuss the importance of heat exchanger for industrial use.
 - VIII. State and explain the Dalton's law of partial pressure.
 - IX. What are the essential properties of good refrigerant?
 - X. Differentiate between primary and secondary refrigerant.

2X10=20

Section B

- 2. Define and explain Gross and Net calorific value of fuels.
- 3. Sketch and explain use of Orsat apparatus used in determining the percentage of flue or exhaust gases. Does it help in controlling combustion?
- 4. Describe with a neat sketch, the working of vane blower compressor and show its p-v diagram. For what applications, it is used.
- 5. Define the following:
 - I. Specific humidity II. Absolute humidity
 - III. Relative humidity III. Dew point temperature
- 6. Classify heat exchanger & discuss their elements. 5X4=20

Section C

- 7. A blast furnace gas has the following volumetric composition:
 - CO_2 = 11%; CO=27%; H_2 =2% and N_2 =60%. Find the theoretical volume of air required for the complete combustion of 1 m³ of gas. Find the percentage composition of dry flue gas by volume. Assume that air contains 21% of O_2 and 79% of N_2 by volume.
- 8. Draw p-v and T-s diagram for a single stage reciprocating air compressor, without clearance.
 Derive the expression for the workdone when compression is (a) isothermal, and (b) isentropic.
- 9. Explain and show the following processes on psychrometric chart:
 - I. Cooling and dehumidification II. Heating and humidification 10X2=20